On Degrees of Irreducible Brauer Characters

نویسنده

  • W. WILLEMS
چکیده

Based on a large amount of examples, which we have checked so far, we conjecture that |G|p′ ≤ ∑ φ φ(1) 2 where p is a prime and the sum runs through the set of irreducible Brauer characters in characteristic p of the finite group G. We prove the conjecture simultaneously for p-solvable groups and groups of Lie type in the defining characteristic. In non-defining characteristics we give asymptotically an affirmative answer in many cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Conjecture on Brauer Character Degrees of Finite Groups

Recently, a new conjecture on the degrees of the irreducible Brauer characters of a finite group was presented in [16]. In this paper we propose a ’local’ version of this conjecture for blocks B of finite groups, giving a lower bound for the maximal degree of an irreducible Brauer character belonging to B in terms of the dimension of B and well-known invariants like the defect and the number of...

متن کامل

Characters of Brauer's Centralizer Algebras

Brauer's centralizer algebras are finite dimensional algebras with a distinguished basis. Each Brauer centralizer algebra contains the group algebra of a symmetric group as a subalgebra and the distinguished basis of the Brauer algebra contains the permutations as a subset. In view of this containment it is desirable to generalize as many known facts concerning the group algebra of the symmetri...

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

Burnside-Brauer Theorem and Character Products in Table Algebras

In this paper, we first show that the irreducible characters of a quotient table algebra modulo a normal closed subset can be viewed as the irreducible characters of the table algebra itself. Furthermore, we define the character products for table algebras and give a condition in which the products of two characters are characters. Thereafter, as a main result we state and prove the Burnside-Br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004